36,854 research outputs found

    Encountering Marx: bonds and barriers between Christians and Marxists

    Get PDF
    Lochman, Jan Milic. Translated by Edwin Robertson. Philadelphia: Fortress Press, 197

    The Spirituals and the Blues

    Get PDF
    Cone, James H. The Spirituals and Blues. New York: Seabury Press, 197

    In Search of Our Own Reality

    Get PDF

    Gifts for the Church

    Get PDF

    Wives as Neighbours

    Get PDF

    Multiple port pressure scanner valve features greater accuracy, quicker data

    Get PDF
    Fast, accurate, multipressure measuring system, which employs a multiple port pressure scanning valve that connects a pressure transducer to many pressures, is described

    Intercessory Prayer and Telepathy

    Get PDF

    A microscopic mechanism for rejuvenation and memory effects in spin glasses

    Full text link
    Aging in spin glasses (and in some other systems) reveals astonishing effects of `rejuvenation and memory' upon temperature changes. In this paper, we propose microscopic mechanisms (at the scale of spin-spin interactions) which can be at the origin of such phenomena. Firstly, we recall that, in a frustrated system, the effective average interaction between two spins may take different values (possibly with opposite signs) at different temperatures. We give simple examples of such situations, which we compute exactly. Such mechanisms can explain why new ordering processes (rejuvenation) seem to take place in spin glasses when the temperature is lowered. Secondly, we emphasize the fact that inhomogeneous interactions do naturally lead to a wide distribution of relaxation times for thermally activated flips. `Memory spots' spontaneously appear, in the sense that the flipping time of some spin clusters becomes extremely long when the temperature is decreased. Such memory spots are capable of keeping the memory of previous ordering at a higher temperature while new ordering processes occur at a lower temperature. After a qualitative discussion of these mechanisms, we show in the numerical simulation of a simplified example that this may indeed work. Our conclusion is that certain chaos-like phenomena may show up spontaneously in any frustrated and inhomogeneous magnetic system, without impeding the occurrence of memory effects.Comment: 9 pages (11 figures) - revised version, to appear in Eur. Phys. J. B (2001

    Efficient Bayesian inference for harmonic models via adaptive posterior factorization

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in NEUROCOMPUTING, [VOL72, ISSUE 1-3, (2008)] DOI10.1016/j.neucom.2007.12.05

    Stochastic band structure for waves propagating in periodic media or along waveguides

    Full text link
    We introduce the stochastic band structure, a method giving the dispersion relation for waves propagating in periodic media or along waveguides, and subject to material loss or radiation damping. Instead of considering an explicit or implicit functional relation between frequency ω\omega and wavenumber kk, as is usually done, we consider a mapping of the resolvent set in the dispersion space (ω,k)(\omega, k). Bands appear as as the trace of Lorentzian responses containing local information on propagation loss both in time and space domains. For illustration purposes, the method is applied to a lossy sonic crystal, a radiating surface phononic crystal, and a radiating optical waveguide. The stochastic band structure can be obtained for any system described by a time-harmonic wave equation
    • …
    corecore